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Hönggerberg, HCI D-CHAB, CH-8093 Zürich
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Abstract

In this contribution we address the problem of near symmetry and present a Continuous Symme-

try Measure (CSM) based on the electron density function. In particular we propose an algorithm

which generalizes the formalism proposed by Avnir[1, 2] toward an exploitation of point symmetry

groups properties. Correlations with existing definitions of CSM are discussed and an implemen-

tation which uses a simplified electron density of the proposed approach is presented. Advantages

and disadvantages of the different approaches are reported.
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I. INTRODUCTION

Continuous Symmetry Measure (CSM) in chemistry has been introduced by Avnir and

coworkers[1, 2] and subsequently reproposed by Grimme[3] via a wave function approach.

Wales[4] used pure energetic considerations to present a near symmetry concept and Bel-

larosa and Zerbetto[5] proposed a measure which combines the ideas proposed by Avnir and

Grimme. If the CSM is limited to inversion and mirror symmetry it determines a continuous

chirality measure. Recent works aiming to quantify chirality are presented by Smirnov et

al.[6] and by Capozziello and Lattanzi[7–10]. They define a measure closely related to the

CSM proposed in this contribution. A recent paper[11] by M.Petitjean reviews the symme-

try and chirality measures proposed since 1890 in different scientific fields and underlines

the importance of the subject for the scientific community.

The concept at the base of CSM is that symmetry can be treated as a continuous rather

than a discrete property of an object. Potential applications of this concept have been fore-

seen by its authors and later successfully applied in biology[12] as well as in fields completely

different from natural sciences[13]. Applications of the CSM as a correlation parameter for

the study of several properties are getting more and more frequent in the literature and yield

promising results[14–16]. Inclusion of CSM as a standard parameter in QSPR (quantitative

structure-property relationship) approaches should be a growing trend in particular for those

area where chirality and enantiodifferentation are investigated.

Reactivity, dynamic properties of molecules, allowed and forbidden transitions in elec-

tronic and vibrational spectra are only a few of the fields of possible application in chemistry

of a near symmetry concept. Allowing for a quantitative measure of chirality, CSM opens

very interesting prospectives in stereochemistry and asymmetric synthesis. A review on CSM

and chirality measures appears in Encyclopedia of Computational Chemistry (1998)[1].

In this paper we will present an algorithm which defines a CSM for a molecular electron

density function for every point symmetry group. We argue that the proposed algorithm

has a more general validity and in this respect we will present a comparison of the proposed

procedure with two others definitions of CSM. In particular we formalize within point sym-

metry group theory the approach proposed by Avnir and coworkers[1]. We shall also show

that the approaches proposed by Avnir and Grimme can be both included as particular cases

of our proposition and that molecular chirality measures in the framework of the Quantum
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Similarity Approach (QSA)[17, 18] can be easily derived from our proposed formalism.

The success of density functional theory (DFT)[19–21] in the last decade in the study of

electronic structure of molecules justifies the use of the electron density as a basic object to

refer to for a CSM analysis.

In order to compete in terms of computer time with Avnir’s definition and propose an

implementation able to handle large molecules we define an approximated electron density

which we will use in a computer program.

The next section presents the new CSM definition. Section III briefly reviews the previous

definitions and discuss similarities and differences from the presently proposed one. Before

concluding we report selected examples.

II. DESCRIPTION OF THE CSM MODEL

We introduce a model that allows the implementation of the calculation of CSM starting

from the electron density function. At present there is no mean to relate CSM with the

Hamiltonian of any molecular system but we would like to underline that the electron density

is one of the few parameters which is connected directly to the molecular Hamiltonian and

is at the same time subject to a direct experimental measure. These properties make the

electron density a unique parameter for the application of pure geometrical considerations.

We define the CSM as the minimal distance between an object (the electron density)

and a symmetrized one which is used as a reference. This requires the definition of two

quantities: the symmetrized object and a distance.

A symmetrized density ρ̃(r) with respect to a symmetry group G is constructed from a

given electron density ρ(r) using the following equation

ρ̃(r) =
1

nG

nG
∑

µ

Sµρ(r) (1)

where nG is the order of the symmetry groupG, and Sµ runs over all the distinct symmetry

operations of the group.

The function ρ̃(r) is then totally symmetric with respect to the point group G and can be

therefore used as the symmetrized reference object. The demonstration that ρ̃(r) is totally

symmetric follows a standard group theory technique which makes use of the rearrangement

theorem and is reported in the appendix.
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We should stress that in this case the function ρ(r) can have no symmetry properties.

Because of this we cannot define any specific position and orientation of the symmetry

elements belonging to the group G with respect to the ρ(r). We solve this problem with a

minimization procedure which is discussed later in this paper. Nevertheless equation (1) is

our master equation for the following development.

The second step in our procedure is to define a distance function. We define it to be a

pure Euclidean geometrical distance:

D =
∫

|ρ̃(r) − ρ(r)|2dr (2)

where D is the distance and ρ and ρ̃ are the quantities previously defined.

The distance proposed in equation 2 is for example used in most of the density fitting

tools for quantum chemistry applications for the reproduction of coulomb potentials[22].

The Avnir’s definition of CSM makes use of the same Euclidean distance for discrete terms.

More interesting is the fact that an ongoing discussion exists[23] (and references therein)

about the concept of Quantum Similarity Measure (QSM) which is defined by integrals of

the type:

ZAB =
∫ ∫

ρA(r1)Ω(r1, r2)ρB(r2)dr1dr2 (3)

where the electron densities of a molecules A and a molecule B are introduced and Ω is

a given positive definite operator. If the two densities are of the same molecule then the

measure is defined as quantum self-similarity measure.

If the Ω operator is the Dirac delta and we substitute our ρ̃ and ρ for ρA and ρB respec-

tively we obtain:

ZCSM =
∫

ρ̃(r)ρ(r)dr (4)

which, we shall see later, is the discriminating term in equation 2 as discussed also in the

QMS approaches[23, 24].

These arguments clearly identify the proposed distance as the best candidate. There are

obviously other possible definition for the distance function. For example we will make use

of a different one in the context of a wave function approach. There is a further possible

definition which will not be investigated in this work but nevertheless we would like to

introduce in this context.

We can define a symmetry constrained energy minimization. In the framework of DFT

E = E[ρ] is the total energy defined via a functional of the density ρ. We can define a sym-
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metrized energy Ẽ by minimizing the energy functional E[ρ̃] with the additional constrain

of having ρ̃ total symmetric with respect a given group G

Ẽ = minE[ρ̃] (5)

The variational principle will assure Ẽ − E ≥ 0 and a CSM can be defined in the form:

ECSM ∝ Ẽ −E (6)

This measure seems to be promising expacially in cojunction with concepts arising from

superpositon states of chiral molecules[25] but has not been chosen for the context of this

paper because it will need a more detailed formal description expecially in conjunction

with the symmetry constrained minimization procedure. It would be possible to follow our

procedure described in the following text (summarized by equations (1) and (7)) but it will

give rise to expensive calculation in terms of computer time (which is not in the spirit of

the presented CSM), technical problems in the implementation (due to nuclei cusps) and

while an equation like (1) whould be a wanted feature in order to obtain correlations it is

not guarrantied that a minimization of the type of equation (7) as proposed also by other

authors[2, 2] is suited for a DFT approach.

because it will result expensive in terms of computer time (which is not in the spirit

of the presented CSM) and it gives rise to some technical problems in the implementation

(due to nuclei cusps). Moreover it will need a more detailed formal description expecially

in conjunction with the symmetry constrained minimization procedure

which is out of the scope of this contribution.

In equation 1 we assumed a predefined space orientation and position of the symme-

try elements (inversion center, mirror planes or rotational axis) associated with each given

symmetry operation Si of the given point symmetry group G. The distance will also be a

function of the position and orientation of these symmetry elements. With this in mind we

define the CSM as:

CSM = minRg ,θ,φ,ψD = minRg ,θ,φ,ψ

{

1

N

∫

|ρ̃[Rg, θ, φ, ψ] − ρ|2dr
}

(7)

Where we introduced the dependency of ρ̃ on the θ, φ, ψ,Rg which are respectively the

Eulerian angles and the vector identifying the origin of a Cartesian reference frame fixed
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to the symmetry elements of the point symmetry group G with respect to the cartesian

molecular frame. A normalization factor N is also introduced in order to define proper

limits for the CSM. A symmetric object will be characterized by a CSM value of 0.

The whole procedure is summarized by these steps:

• Define a symmetrized object using equation 1.

• Choose a suitable distance measure (equation 2 in our case).

• Define the CSM as the minimum distance as in equation 7.

This three steps definition of CSM is valid for all point symmetry groups. In the next sction

we will also show that we can apply the procedure to quantities different from the electron

density.

III. RELATION WITH PREVIOUS CSM DEFINITIONS

As mentioned above there are other approaches to CSM which use different quantities

to define a CSM. One of these definitions uses the coordinate vectors in the CSM equation

as basic parameters. A second definition instead applies symmetry operators to the wave

function.

In this section we relate these CSM to our three steps procedure.

The approach which uses geometrical points for the CSM definition has been developed

by D. Avnir and coworkers[2]. For simple cases this CSM definition can be summarized with

this equation

CSMP =
1

M

N
∑

i

|p̃i − pi|
2 (8)

where the pi are vectors indicating the position of the nuclei and the p̃i are a symmetrized set

of vectors obtained from the original pi set. The summation runs over the total number of

points N and M is a normalization factor. In Avnir’s formalism equation 8 defines directly

the CSM due to the particular procedure used to define the set of points p̃i.

We will apply the method proposed in section II to a set of N Cartesian points pi(i =

1, N). We propose here a simplified procedure which is valid for cyclic point symmetry

groups Cn.
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In equation (7) there is an implicit averaging of the electron density ρ due to the presence

of the integral. In the case of discrete points we are bound to develop an assignment

procedure from the set {pi} to the set {p̃i} in order to obtain an equivalent averaging.

We divide the set of {pi} position vectors in partitions considering nγ > 0 partitions of nG

vectors of the set {pi} plus 1 partition with the N − nγ ·nG remaining vectors up to include

all the vectors of the {pi} set. γ labels the possible different partitioning. An equivalent

partitioning scheme is defined for the set of symmetric vectors {p̃i}.

For each possible partitioning scheme the set of symmetrized vectors {p̃i} is determined

by

p̃
γ
i =

1

nG

nG
∑

µ

Sµp
γ
j(µ,i) (9)

for vectors in the first nγ partitions and

p̃
γ
i =

1

nG

nG
∑

µ

Sµp
γ
i (10)

for the other vectors belonging to the last partition.

In equation 9 the special index j(µ, i) is used to select vectors in the partition containing

the vector pi and identify the µ-th vector cyclically counted within the partition elements

index starting from the vector pi.

For example assuming the partitioning {p1, p2, p3}{p4, p5, p6}{p7} the index j(µ = 3, i =

6) = 5 determines the point p5. The index j(µ, i) will be completely determined only once

we define an order for Sµ symmetry operators with respect to the index µ. We use the

convention that S1 = E (identity) and that Sn = C(n−1)
n .

We have assumed a one-to-one correspondence between the vectors {pi} and the newly

generated vectors {p̃i}. Once a given γ partitioning is determined we can relax this constraint

by considering all possible permutations of the vectors {pi} while leaving the index i in place.

We call P χ({pi}) all the possible permutations indexed by χ and assume that P 0({pi})

(χ = 0) is the permutation that leaves the {pi} points in place. With this in mind we can

introduce the γ index of the partitions and the χ index of the permutations within the j(. . .)

index. We define a new index j(γ, χ, µ, i) as follow: j determine a γ partition and a P χ({pi})

permutation and identifies the element in the µ-th position of the partition which contain

the element P χ({pi}) (identified by i after the permutation operator P χ has been applied)
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cyclically counted from the P χ({pi}) element itself.

For example assuming P 0({pi}) = {p1, p2, p3}{p4, p5, p6}{p7} and P χ=6({pi}) =

{p2, p3, p5}{p6, p1, p4}{p7} of a given γ = 1 partitioning, the index j(γ = 1, χ = 6, µ =

3, i = 6) = 1 determines the point p1. The symmetric points are then determined by:

p̃
γ,χ
i =

1

nG

nG
∑

µ

Sµpj(γ,χ,µ,i) (11)

The distance function is defined as:

D
γ,χ
P =

1

M

N
∑

i=1

|p̃γ,χi − pi|
2 (12)

Performing the minimization we define the CSMP as

CSMP = minRg ,θ,φ,ψ,γ,χ

{

1

M

N
∑

i=1

|p̃γ,χi − pi|
2

}

(13)

With these last equations we have reformulated Avnir’s CSM definition within our three

steps scheme and we have introduced the additional mapping index j(γ, χ, µ, i) which sum-

marize Avnir’s scheme.

A complete description of this approach for all the point symmetry groups require a more

detailed treatment which will be the subject of a second paper[26].

A completely different approach was proposed by Grimme[3]. This method uses the wave

function as a basic quantity for the CSM.

Grimme’s definition is based on the expectation value of a symmetry operator. Summa-

rizing the work of Grimme in an equation we have

CSMW = 1 − |〈Φ|S|Φ〉| (14)

where Φ is the a normalized wave function obtained via an ab-initio method, S is a given

symmetry operator and CSMW labels a CSM definition based on the wave function.

As in the previous case we follow the steps described in section II using the wave function

of a molecule as basic quantity for the CSM.

Grimme’s approach does not extend the symmetry measure to all the symmetry groups

but it is limited to a single symmetry operator and in order to compare the two measures

we apply our procedure to symmetry groups defined by only two symmetry operations: the

identity and a symmetry operation S.
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A symmetrized wave function is then defined by

∣

∣

∣Φ̃
〉

=
1

nG

nG
∑

µ

Sµ|Φ〉 =
1

nG
(E|Φ〉 + S|Φ〉) (15)

In the Hilbert space a natural distance is the scalar product and we define the measure

of symmetry as:

DW =
〈

Φ|Φ̃
〉

(16)

Introducing the definition 15 in this last equation we obtain:

DW =
1

2
(1 + 〈Φ|S|Φ〉) (17)

where we used 〈Φ|E|Φ〉 = 〈Φ|Φ〉 = 1. The two distances CSMW and DW respectively

from equations 14 and 17 are in linear relation.

Grimme introduces in his equation the absolute value to account for antisymmetric wave

functions. It is possible to include antisymmetry in our definition using a different approach.

In particular we can introduce the representations Γ of the group G and their characters

χΓ
µ and use the projector to define a Γ symmetrized wave function as:

∣

∣

∣Φ̃Γ
〉

=
1

nG

nG
∑

µ

χΓ
µSµ|Φ〉 (18)

assuming again that the group G is bidimensional and that it has two irreducible repre-

sentations, a total symmetric one and an antisymmetric one, for example Γ = A and Γ = B,

it is possible to write a second measure for the second representation:

DB
W =

1

2
(1 − 〈Φ|S|Φ〉) (19)

where for the characters χBµ the values of 1 and −1 have been used for the E and the

generic S operations parts respectively.

The minimization procedure will not be considered since it is equivalent in both measures.

Instead we should argue that in our development we explicitly used a symmetrized wave

function which justifies the use of a minimization procedure. The equivalence of our defi-

nition of CSM and the one proposed by Grimme seems to suggest the presence of a sym-

metrized wave function hidden in Grimme’s definition which would justifies the required

minimization.
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This doesn’t complete a CSM definition which uses the wave function and much space is

left for discussion.

We have shown that the proposed algorithm includes the CSM proposed by Avnir and

Grimme once the proper quantity are used. We shall now present an implementation which

will preserves the advantages of both Avnir and Grimme’s CSM. It will allow for fast eval-

uation and it will include electronic contribution.

IV. IMPLEMENTATION

We now present a simplified and fast version of the CSM proposed in this contribution.

Equation 2 can be written as:

D′ =
∫

|ρ− ρ̃|2dr =
∫

ρ2dr− 2
∫

ρρ̃dr +
∫

ρ̃2dr (20)

We can recognize three different terms on the right hand side of this equation. The first

one depend completely on the original density ρ while the other two have a dependency on

the symmetrized density ρ̃. In particular we can expand the third term of the r.h.s. and

write:

∫

ρ̃ρ̃dr =
1

n2
g

∫

(

∑

n

Snρ

)(

∑

m

Smρ

)

dr = (21)

=
1

ng

∑

n

[

1

ng

∫

(Snρ)

(

∑

m

Smρ

)

dr

]

(22)

The integral in equation 22 is an integral of the product of two function (namely Snρ and
∑

m Smρ) over the whole space and its value doesn’t change if both function are rotated by

the same symmetry operator. Applying the rotation S−1
n to both functions we can write for

the integral in square braket of equation 22:

[

1

ng

∫

S−1
n Snρ

(

S−1
n

∑

m

Smρ

)

dr

]

= (23)

[

1

ng

∫

S−1
n Snρ

(

∑

m

S−1
n Smρ

)

dr

]

= (24)

[

1

ng

∫

ρ

(

∑

p

Spρ

)

dr

]

=
[∫

ρρ̃dr

]

(25)
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where we used again the rearrangement theorem. Equation 22 can now be written as:

∫

ρ̃ρ̃dr =
1

ng

∑

n

[∫

ρρ̃dr

]

=
∫

ρρ̃dr (26)

and substituting in the main distance equation (20) we obtain

D′ =
∫

ρ2dr −
∫

ρρ̃dr (27)

After normalization we have

D = 1 −

∫

ρρ̃dr
∫

ρ2dr
(28)

which gives a more practical approach for the calculation of the distance. Moreover we

can see that this distance is related to the indexes used in QMS[24] which uses quantities of

the type of equation 4.

Applications of the CSM are usually correlations with other properties and we should not

expect strong variation of a given correlation for small variation of the symmetry measure.

In general we should not seek for high accuracy in the calculation of CSM but instead we

need fast evaluation.

In this respect we can approximate the electron density with a superposition of Gaussian

functions.

The electron density is then given by:

ρ =
∑

i

gi (29)

where gi is a simple Gaussian function.

The denominator of the second term of equation 28 is then:

∫

|ρ|2dr =
∫

∣

∣

∣

∣

∣

∑

i

gi

∣

∣

∣

∣

∣

2

dr =
∑

i

∑

j

∫

gigjdr (30)

while the numerator reads:

∫

ρρ̃dr =
1

ng

∑

m

∑

i

∑

j

∫

giSmgjdr (31)
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One of the Sm operations in the summation in m is the identity and we can extract it

out from the sum in m obtaining:

∫

ρρ̃dr =
1

ng





∑

i

∑

j

∫

gigjdr +
∑

m′

∑

i

∑

j

∫

giSm′gjdr



 (32)

where the index m′ runs over all the symmetry operators but the identity. Substituting

equations 30 and 32 into 28 we obtain a simplified equation for the distance

D =
nG − 1

nG
−

∑

m′

∑

i

∑

j

∫

giSm′gjdr

nG
∑

i

∑

j

∫

gigjdr
(33)

These equations are valid for any decomposition of the density of the type of equation 29

but if the functions gi are Gaussian functions it is clear that all the integrals in equation 33

are easily evaluated.

V. APPLICATION

In section IV we have seen a simplified decomposition of the density.

The functions gi can be obtained fitting the density calculated via quantum mechani-

cal methods but this approach is computationally demanding. Instead we can use a very

simplified approach.

We can generate an approximated density using a single Gaussian function for each

nuclear center. The exponents and coefficients of the Gaussian functions can be simply

evaluated constraining the half height width of the Gaussian functions to match the atomic

radii and normalizing their integrals to the atomic charges.

A simple example reported by Grimme[3] is the butadiene. This molecule can present chi-

rality depending on the spatial conformations. We can measure the Chirality content of the

molecule at different geometries evaluating the CSM for groups containing improper sym-

metry operations. In particular the Ci and Cs groups are related to the inversion symmetry

operation i and mirror plane σ respectively.

In figure 1 are presented the results of the two CSM measure. The measures have been

performed with a variation of the torsional angle defined by the four carbon chain keeping

all the other geometrical parameter fixed. In particular all the geometrical parameters were
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FIG. 1: CSM in % for butadiene at different dihedral angles. The measure is performed against

the Ci and Cs symmetry groups.

obtained as medium bond values. We obtained the atomic radii from the periodic table and

fixed the charges to 0.

Even if the presented example implement a simple approach with strong approximations

the final picture is qualitatively close to the evaluation of CSM using the wave function[3].

A second example makes clear the advantage of a density based approach if compared

with a geometrical points approach. We evaluate the CSM for H2O2 and H2S2 molecules.

In figure 2 is presented the plot of CSM for the Cs group at different dihedral values.
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C
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H2S2 Cs

FIG. 2: CSM in % for H2O2 and H2S2 at different dihedral angles.

The equilibrium geometries for both molecules are obtained via Density Functional The-

ory using the program ADF[27] and the other geometries are obtained following a constrained

variation of the HOOH dihedral angle (all other geometrical parameter fixed to the DFT

equilibrium values). The Gaussian functions where determined using periodic table atomic

radii and considering a polarization of the X − H(X = O, S) bonds of 0.3 electrons. The
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numerical value 0.3 is a crude approximation of the Mullikan charges obtained in the DFT

calculations of the equilibrium structures. A CSM using the geometrical points approach

would determine identical measures for these systems.

In this examples we used simple parameters for the Gaussian functions. In principle we

can define different atom types and build a database of Gaussian function parameters in the

same way molecular mechanic methods define force fields.

VI. CONCLUDING REMARKS

This contribution described a CSM definition which we claim to have general validity.

This general validity has been undelined by the application of the definition to different

quatities.

It is also proposed an approximation which allow for a “fast” CSM implementation and

still includes electronic contribution.

In the case of the chirality measure we can regard our distance function as a distance of

the original chiral object from an achiral reference (deviation from achirality) as well as a

distance of the original object from its mirror image (similarity measure). This is intrinsic

in our definition of symmetrized object and an a priori classification of the measure into

chirality measure of the first or of the second kind[11] is not possible.

When the CSM is limited to a Chirality Measure by considering only the Cs point sym-

metry group out definition reduces to the chirality measure defined within the framework of

Quantum Similarity Approach[18] including it in a more general picture.

A true connection with the hamiltonian of a molecule has not been presented in this

contribution. Nevertheless it has been introduced an approach which uses point group theory

as starting equations. Preliminary work for a future contribution show that a symmetric

decomposition of a molecular wave function within the Hilbert space can lead to a consisted

approach and it is worth for exploration. The simple DFT example of H2X2(X = O, S)

seems to recover part of the electron orbit contribution which is present in high quality parity

violation calculation[25]. This approach is a possible “way to go” for a future symmetry

measure.

The computer program used for the evaluation of the CSM using the electron density will

be made available free of charge at http://www.scriptsfprscience.com/.
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VIII. APPENDIX

We can demonstrate that ρ̃(r) is a symmetric function with respect to the group G using

the rearrangement theorem[28]. The demonstration is part of the standard group theory

techniques but we reproduce it here for sake of clarity. In particular we stress that the

initial molecular ρ density does not need (and usually has not) any particular symmetry

property to justify the use of the projection operator in equation 1.

If ρ̃(r) is a total symmetric function with respect the group G the equation

ρ̃(r) = Sµρ̃(r) (34)

should hold for every operation Sµ of the group G. Substituting the definition of ρ̃(r)

from equation (1) into equation (34) we obtain

1

nG

nG
∑

ν

Sνρ(r) =
1

nG

nG
∑

ν

SµSνρ(r) (35)

that has to be demonstrated. To verify this equality it is sufficient to demonstrate that

on the right hand side we do not have duplicated elements in the µ, ν series for any arbitrary

µ i.e. that the terms of the sum on the right end side are exactly the same as the terms on

the left end side.

Suppose indeed that for a given µ we have common elements for example in the case that

ν assumes values ν = νa and ν = νb we have:

SµSνa
= SµSνb

(36)

Multiplying this equation by S−1
µ we obtain:

Sνa
= Sνb

(37)
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Which is in contradiction with the fact that the each ν term is a distinct elements of the

operation of the group.

If we follow this procedure we will be able to generate an infinity of symmetric objects

starting from the same original one (symmetric or not) just changing the relative spatial

position of the density and of the point group axes.
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